OST: a Heuristic-Based Orthogonal Partitioning Algorithm for Dynamic Hierarchical Data Visualization
Journal of Visualization(2022)
School of Computer Science and Engineering
Abstract
Tools for intuitive visualization of dynamic datasets are highly demanded for capturing information and revealing potential patterns, especially in understanding the trend of data changes. We propose a novel resolution-independent heuristic algorithm, termed Orthogonal Stable Treemap (OST), to implicitly display dynamic hierarchical data value changes. OST adopts a site-based method as the Voronoi treemap (VT), to preserve the layout stability for diversified data values. Meanwhile, OST partitions the whole canvas with horizontal or vertical lines, instead of the lines with arbitrary orientations in VT. Technical innovations are made in three parts: Initialization of site state to speed up the algorithm and preserve the layout; efficient computation of orthogonal rectangular diagram to partition the empty canvas; self-adaption of site state to quickly reach an equilibrium. The performance of OST is quantitatively evaluated in terms of computation complexity, computation time, convergence rate, visibility, and stability. Moreover, qualitative evaluations (use case and user study) are demonstrated on the dynamic work-in-process dataset in the wafer fab. Evaluation results show that OST combines the advantages of layout stability and tidiness, contributing to easier and faster plot understanding.
MoreTranslated text
Key words
Orthogonal rectangles,Treemap,Dynamic hierarchical data,Implicit hierarchy visualization,Resolution-independent
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined