WeChat Mini Program
Old Version Features

Deep-Learning-Based Object Filtering According to Altitude for Improvement of Obstacle Recognition During Autonomous Flight

Remote sensing(2022)

Hanyang Univ

Cited 3|Views18
Abstract
The autonomous flight of an unmanned aerial vehicle refers to creating a new flight route after self-recognition and judgment when an unexpected situation occurs during the flight. The unmanned aerial vehicle can fly at a high speed of more than 60 km/h, so obstacle recognition and avoidance must be implemented in real-time. In this paper, we propose to recognize objects quickly and accurately by effectively using the H/W resources of small computers mounted on industrial unmanned air vehicles. Since the number of pixels in the image decreases after the resizing process, filtering and object resizing were performed according to the altitude, so that quick detection and avoidance could be performed. To this end, objects up to 60 m in height were classified by subdividing them at 20 m intervals, and objects unnecessary for object detection were filtered with deep learning methods. In the 40 m to 60 m sections, the average speed of recognition was increased by 38%, without compromising the accuracy of object detection.
More
Translated text
Key words
computer vision,obstacle recognition,unmanned aerial vehicle
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined