Sparse Enhancement Fuzzy Broad Learning System Based on Multiple Clustering Methods
Journal of Physics Conference Series(2022)
Guangdong Polytechnic Normal University
Abstract
The fuzzy broad learning system (FBLS) is a novel, neuro-fuzzy model. Different from other neuro-fuzzy models with low efficiency, FBLS can obtain better performance using less computation time. However, the clustering-based fuzzy rule generation approach makes the performance of FBLS limited. Meanwhile, it is unknown how the enhancement layers from FBLS contribute to the model performance, which hinders the further extension of the model structure. To solve these problems, we propose a sparse enhancement fuzzy broad learning system (SEFBLS). It uses only a sparse set of enhancement nodes to replace the original enhancement node groups. To obtain a better representation, the designed principal component-based sparse autoencoder is used for feature reconstruction and information removal. In addition, to explore the optimal model structure and performance, multiple clustering methods (fuzzy and non-fuzzy) are used to improve SEFBLS. The results on 10 UCI classification datasets show that the proposed SEFBLS obtains competitive accuracy using fewer fuzzy rules.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined