WeChat Mini Program
Old Version Features

Auditable, Available and Resilient Private Computation on the Blockchain Via MPC

International Conference on Cyber Security Cryptography and Machine Learning (CSCML)(2021)

Sandia Natl Labs

Cited 3|Views4
Abstract
Simple but mission-critical internet-based applications that require extremely high reliability, availability, and verifiability (e.g., auditability) could benefit from running on robust public programmable blockchain platforms such as Ethereum. Unfortunately, program code running on such blockchains is normally publicly viewable, rendering these platforms unsuitable for applications requiring strict privacy of application code, data, and results. In this work, we investigate using MPC techniques to protect the privacy of a blockchain computation. While our main goal is to hide both the data and the computed function itself, we also consider the standard MPC setting where the function is public. We describe GABLE (Garbled Autonomous Bots Leveraging Ethereum), a blockchain MPC architecture and system. The GABLE architecture specifies the roles and capabilities of the players. GABLE includes two approaches for implementing MPC over blockchain: Garbled Circuits (GC), evaluating universal circuits, and Garbled Finite State Automata (GFSA). We formally model and prove the security of GABLE implemented over garbling schemes, a popular abstraction of GC and GFSA from (Bellare et al., CCS 2012). We analyze in detail the performance (including Ethereum gas costs) of both approaches and discuss the trade-offs. We implement a simple prototype of GABLE and report on the implementation issues and experience.
More
Translated text
Key words
Secure Multi-party Computation,Privacy-Preserving Computation,Searchable Encryption,Attribute-Based Encryption,Parallel Computing
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined