Improvements in Wintertime Surface Temperature Variability in the Community Earth System Model Version 2 (CESM2) Related to the Representation of Snow Density

JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS(2022)

引用 1|浏览10
暂无评分
摘要
The Community Earth System Model (CESM) is widely used for the prediction and understanding of climate variability and change. Accurate simulation of the behavior of near surface air temperature (T-2m) is critical in such a model for addressing societally relevant problems. However, previous versions of CESM suffered from an overestimation of wintertime T-2m variability in Northern Hemisphere (NH) land regions. Here, it is shown that the latest version of CESM (CESM2) exhibits a much improved representation of wintertime T-2m variability compared to its predecessor and it now compares well with observations. A series of targeted experiments reveal that an important contributor to this improvement is the local effects of changes to the representation of snow density within the land surface component. Increased snow densities in CESM2 lead to enhanced conductance of the snow layer. As a result, larger heat fluxes across the snow layer are induced in the presence of T-2m anomalies, leading to a greater dampening of surface and near surface atmospheric temperature anomalies. The implications for future projections with CESM2 are also considered through comparison of the CESM1 and CESM2 large ensembles. Aligned with the reduction in surface temperature variability, compared to CESM1, CESM2 exhibits reduced ensemble spread in future projections of NH winter mean temperature and a smaller decline in daily wintertime T-2m variability under climate change. Overall, this improvement has increased the accuracy of CESM2 as a tool for the study of wintertime T-2m variability and change.
更多
查看译文
关键词
temperature variability,climate modeling,land-atmosphere coupling,snow density
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要