玉米低密度育种芯片开发及在种质资源评价中的应用
Journal of Plant Genetic Resources(2022)
Abstract
SNP基因分型芯片是分子育种的重要工具,高密度SNP芯片往往存在标记冗余、价格高、目标性不强等问题,是分子育种走向常规化、规模化的主要限制因素之一.本研究介绍了一款新开发的低密度育种芯片,并就芯片在种质资源评价中的价值进行了分析.首先,对37份玉米自交系进行10×重测序,获得了18.2 Mb的SNP标记,从中挑选2080个SNPs;再从已开发55 K芯片中挑选3390个缺失率低、多态性高、标记类型为高多态分辨率的标记;最后从HapMap3中挑选586个标记,设计的育种芯片共包含6056个SNPs,采用靶向测序基因型检测(GBTS,genotyping by target sequencing)技术对标记进行检测.通过自然群体、双亲群体和多亲本重组自交系(MAGIC,multiparent advanced generation inter-cross)群体验证表明,育种芯片检测到的原始设计位点数为4773~5967个,自然群体中最小等位基因频率(MAF,minor allele frequency) >0.4和多态性信息含量(PIC,polymorphism information content) >0.4的标记比例分别为57.6%和88.6%,MAGIC群体平均捕获率为70.6%.用该芯片对226份玉米种质资源进行评价,主成分分析可以将其划分为温带和热带两大类群,UPGMA聚类分析进一步将其划分为6个已知类群,分别是瑞德、兰卡斯特、PB、旅大红骨、四平头和热带类群,利用Structure软件进行群体结构分析,没有出现最佳K值,但热带材料都独立成群;类群内和类群间的遗传距离平均值分别为0.394和0.471,其中PB群内的遗传距离最小(0.316),热带类群内的遗传距离最大(0.424);类群间,瑞德与热带之间的遗传距离最大(0.493);类群间的遗传分化系数(FST)表明,PB类群与其他类群间的FST均较大.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined