WeChat Mini Program
Old Version Features

Multi-labeled Neural Network Model for Automatically Processing Cardiomyocyte Mechanical Beating Signals in Drug Assessment

Biosensors and Bioelectronics(2022)

Res Ctr Intelligent Sensing Syst

Cited 6|Views16
Abstract
High-throughput cardiotoxicity assessment is important for large-scale preclinical screening in novel drug development. To improve the efficiency of drug development and avoid drug-induced cardiotoxicity, there is a huge demand to explore the automatic and intelligent drug assessment platforms for preclinical cardiotoxicity investigations. In this work, we proposed an automatic and intelligent strategy that combined automatic feature extraction and multi-labeled neural network (MLNN) to process cardiomyocytes mechanical beating signals detected by an interdigital electrode biosensor for the assessment of drug-induced cardiotoxicity. Taking advantages of artificial neural network, our work not only classified different drugs inducing different cardiotoxicities but also predicted drug concentrations representing severity of cardiotoxicity. This has not been achieved by conventional strategies like principal component analysis and visualized heatmap. MLNN analysis showed high accuracy (up to 96%) and large AUC (more than 98%) for classification of different drug-induced cardiotoxicities. There was a high correlation (over 0.90) between concentrations reported by MLNN and experimentally treated concentrations of various drugs, demonstrating great capacity of our intelligent strategy to predict the severity of drug-induced cardiotoxicity. This new intelligent bio-signal processing algorithm is a promising method for identification and classification of drug-induced cardiotoxicity in cardiological and pharmaceutical applications.
More
Translated text
Key words
Cardiomyocytes,Interdigital electrode biosensor,Automatic segmentation,Automatic feature extraction,Multi-labeled neural network
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined