Comprehensive Ocean Information Enabled AUV Path Planning via Reinforcement Learning
user-5f6bfffd92c7f9be21bbcc99(2022)
Abstract
The path planning of the Autonomous Underwater Vehicle (AUV) has shown great potential in various Internet-of-Underwater-Things (IoUT) applications. Although considerable efforts had been made, prior studies are confronted with some limitations. For one thing, existing work only uses the ocean current simulation model without introducing real ocean information, having not been supported by real data. For another, traditional path planning algorithms have strong environment dependence and lack flexibility: once the environment changes, they need to be re-modelled and re-planned. To overcome these challenges, this paper proposes COID, an AUV path planning scheme exploiting comprehensive ocean information and reinforcement learning, which consists of three steps. First, we introduce the comprehensive real ocean data including weather, temperature, thermohaline, current, etc., and apply them into the regional ocean modeling system to generated reliable ocean current. Next, through well-designed state transition function and reward function, we build a 3D grid model of ocean environment for reinforcement learning. Furthermore, based on the framework of Double Dueling Deep Q Network (D3QN), COID integrates local ocean current and position features to provide state input and uses priority sampling to accelerate network convergence. The performance of COID has been evaluated and proved by numerical results, which demonstrate efficient path planning and high flexibility for expansion into different ocean environments.
MoreTranslated text
求助PDF
上传PDF
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined