An Interpretable Convolutional Neural Network Framework for Analyzing Molecular Dynamics Trajectories: a Case Study on Functional States for G-Protein-Coupled Receptors.
Journal of Chemical Information and Modeling(2022)
Sichuan Univ
Abstract
Molecular dynamics (MD) simulations have made great contribution to revealing structural and functional mechanisms for many biomolecular systems. However, how to identify functional states and important residues from vast conformation space generated by MD remains challenging; thus an intelligent navigation is highly desired. Despite intelligent advantages of deep learning exhibited in analyzing MD trajectory, its black-box nature limits its application. To address this problem, we explore an interpretable convolutional neural network (CNN)-based deep learning framework to automatically identify diverse active states from the MD trajectory for G-protein-coupled receptors (GPCRs), named the ICNNMD model. To avoid the information loss in representing the conformation structure, the pixel representation is introduced, and then the CNN module is constructed to efficiently extract features followed by a fully connected neural network to realize the classification task. More importantly, we design a local interpretable model-agnostic explanation interpreter for the classification result by local approximation with a linear model, through which important residues underlying distinct active states can be quickly identified. Our model showcases higher than 99% classification accuracy for three important GPCR systems with diverse active states. Notably, some important residues in regulating different biased activities are successfully identified, which are beneficial to elucidating diverse activation mechanisms for GPCRs. Our model can also serve as a general tool to analyze MD trajectory for other biomolecular systems. All source codes are freely available at https://github.com/Jane-Liu97/ICNNMD for aiding MD studies.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined