Next-Generation Sequencing Revealed a Distinct Immunoglobulin Repertoire with Specific Mutation Hotspots in Acute Myeloid Leukemia

BIOLOGY-BASEL(2022)

引用 0|浏览31
暂无评分
摘要
Simple Summary Identifying new molecular targets is of great importance for prognosis prediction and target therapy of acute myeloid leukemia (AML). We previously reported on frequent expression of immunoglobulin (Ig) in myeloblasts. In this study, we investigated the clinical significance of Ig expression in sorted myeloblasts from 59 AML patients. We found that a higher level of AML-derived Ig expression correlated with a significantly shorter disease-free survival. Furthermore, we performed a comprehensive analysis of AML-derived Ig repertoire by next-generation sequencing (NGS) in 16 patients. The transcripts of AML-derived Ig shared some features with B cell-derived Ig, such as a typical V(D)J recombination and high mutation rates. However, they also showed distinct features. In contrast to the huge diversity of classical Ig, the V-H-D-J(H) rearrangements used by AML-derived Ig were biased in each AML patient. In particularly, the V kappa-J kappa rearrangements were skewed in both AML blasts and normal peripheral blood mononucleated cells (PBMCs). However, AML-derived IGK showed high somatic mutation rates (>2%), while IGK in normal PBMCs rarely displayed hypermutation (<2%). More importantly, we identified five mutation hotspots at serine codons of IGKV3-20 in AML blasts, which may be involved in leukemogenesis and serve as a novel marker for disease monitoring and target therapy. Immunoglobulin (Ig) is known as a hallmark of B-lymphocytes exerting antibody functions. However, our previous studies demonstrated that myeloblasts from acute myeloid leukemia (AML) patients could also express Ig with distinct roles. Here, we quantified Ig (IGHG and IGK) transcripts by real-time PCR and performed a comprehensive analysis of Ig repertoire (both heavy chains and light chains) in AML blasts. We found that Ig was frequently expressed by AML blasts. A higher level of AML-derived IGHG expression correlated with a significantly shorter disease-free survival. Next-generation sequencing revealed dysregulated transcripts of all five Ig classes (IGHA, IGHD, IGHE, IGHG, and IGHM) and two Ig types (IGK and IGL) in AML. V-H-D-J(H) rearrangements in myeloblasts were biased with individual specificity rather than generally diverse as in B-cells. Compared to AML-derived IgH, AML-derived IGK was more conserved among different AML samples. The frequently shared V kappa-J kappa patterns were IGKV3-20*01/IGKJ1*01, IGKV2D-28*01/IGKJ1*01, and IGKV4-1*01/IGKJ1*01. Moreover, AML-derived IGK was different from classical IGK in B-cells for the high mutation rates and special mutation hotspots at serine codons. Findings of the distinct Ig repertoire in myeloblasts may facilitate the discovery of a new molecular marker for disease monitoring and target therapy.
更多
查看译文
关键词
acute myeloid leukemia, Ig, next-generation sequencing, V(D)J rearrangement, somatic hypermutation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要