WeChat Mini Program
Old Version Features

Compositional Data Analysis Tutorial.

PSYCHOLOGICAL METHODS(2024)

Australian Natl Univ

Cited 17|Views13
Abstract
This article presents techniques for dealing with a form of dependency in data arising when numerical data sum to a constant for individual cases, that is, "compositional" or "ipsative" data. Examples are percentages that sum to 100, and hours in a day that sum to 24. Ipsative scales fell out of fashion in psychology during the 1960s and 1970s due to a lack of methods for analyzing them. However, ipsative scales have merits, and compositional data commonly occur in psychological research. Moreover, as we demonstrate, sometimes converting data to a compositional form yields insights not otherwise accessible. Fortunately, there are sound methods for analyzing compositional data. We seek to enable researchers to analyze compositional data by presenting appropriate techniques and illustrating their application to real data. First, we elaborate the technical details of compositional data and discuss both established and new approaches to their analysis. We then present applications of these methods to real social science data-sets (data and code using R are available in a supplementary document). We conclude with a discussion of the state of the art in compositional data analysis and remaining unsolved problems. A brief guide to available software resources is provided in the first section of the supplementary document. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
More
Translated text
Key words
compositional data,ipsative data,log-ratio,beta regression,copula
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined