CharID: a two-step model for universal prediction of interactions between chromatin accessible regions

BRIEFINGS IN BIOINFORMATICS(2022)

引用 1|浏览4
暂无评分
摘要
Open chromatin regions (OCRs) allow direct interaction between cis-regulatory elements and trans-acting factors. Therefore, predicting all potential OCR-mediated loops is essential for deciphering the regulation mechanism of gene expression. However, existing loop prediction tools are restricted to specific anchor types. Here, we present CharID (Chromatin Accessible Region Interaction Detector), a two-step model that combines neural network and ensemble learning to predict OCR-mediated loops. In the first step, CharID-Anchor, an attention-based hybrid CNN-BiGRU network is constructed to discriminate between the anchor and nonanchor OCRs. In the second step, CharID-Loop uses gradient boosting decision tree with chromosome-split strategy to predict the interactions between anchor OCRs. The performance was assessed in three human cell lines, and CharID showed superior prediction performance compared with other algorithms. In contrast to the methods designed to predict a particular type of loops, CharID can detect varieties of chromatin loops not limited to enhancer-promoter loops or architectural protein-mediated loops. We constructed the OCR-mediated interaction network using the predicted loops and identified hub anchors, which are highlighted by their proximity to housekeeping genes. By analyzing loops containing SNPs associated with cardiovascular disease, we identified an SNP-gene loop indicating the regulation mechanism of the GFOD1. Taken together, CharID universally predicts diverse chromatin loops beyond other state-of-the-art methods, which are limited by anchor types, and experimental techniques, which are limited by sensitivities drastically decaying with the genomic distance of anchors. Finally, we hosted Peaksniffer, a user-friendly web server that provides online prediction, query and visualization of OCRs and associated loops.
更多
查看译文
关键词
open chromatin region, chromatin loop, 3D genome, convolutional neural network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要