Strategyproofing Peer Assessment Via Partitioning: the Price in Terms of Evaluators' Expertise
Proceedings of the AAAI Conference on Human Computation and Crowdsourcing(2022)
Abstract
Strategic behavior is a fundamental problem in a variety of real-world applications that require some form of peer assessment, such as peer grading of homeworks, grant proposal review, conference peer review of scientific papers, and peer assessment of employees in organizations. Since an individual’s own work is in competition with the submissions they are evaluating, they may provide dishonest evaluations to increase the relative standing of their own submission. This issue is typically addressed by partitioning the individuals and assigning them to evaluate the work of only those from different subsets. Although this method ensures strategyproofness, each submission may require a different type of expertise for effective evaluation. In this paper, we focus on finding an assignment of evaluators to submissions that maximizes assigned evaluators’ expertise subject to the constraint of strategyproofness. We analyze the price of strategyproofness: that is, the amount of compromise on the assigned evaluators’ expertise required in order to get strategyproofness. We establish several polynomial-time algorithms for strategyproof assignment along with assignment-quality guarantees. Finally, we evaluate the methods on a dataset from conference peer review.
MoreTranslated text
Key words
Judgment Aggregation
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
FairColor: an Efficient Algorithm for the Balanced and Fair Reviewer Assignment Problem
INFORMATION PROCESSING & MANAGEMENT 2024
被引用0
Enhancing Peer Assessment with Artificial Intelligence
International Journal of Educational Technology in Higher Education 2025
被引用0
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话