Aza-Crown-Based Macrocyclic Probe Design for "PET-off" Multi-Cu2+ Responsive and "CHEF-on" Multi-Zn2+ Sensor: Application in Biological Cell Imaging and Theoretical Studies

INORGANIC CHEMISTRY(2022)

引用 5|浏览12
暂无评分
摘要
The work represents a rare example of an aza-crown-based macrocyclic chemosensor, H2DTC (H2DTC = 1,16-dihydroxy-tetraaza-30-crown-8) for the selective detection of both Zn2+ and Cu2+ in HEPES buffer medium (pH 7.4). H2DTC exhibits a fluorescence response for both Zn2+ and Cu2+ ions. The reversibility of the chemosensor in its binding with Zn2+ and Cu2+ ions is also examined using a Na2EDTA solution. H2DTC exhibits a chelation-enhanced fluorescence (CHEF) effect in the presence of Zn2+ ions and a quenching effect (CHEQ) in the presence of paramagnetic Cu2+ ions. Furthermore, the geometry and spectral properties of H2DTC and the chemosensor bound to Zn2+ have been studied by DFT and TDDFT calculations. The limit of detection (LOD) values are 0.11 x 10(-9) and 0.27 x 10(-9) M for Cu2+ and Zn2+, respectively. The formation constants for the Zn2+ and Cu2+ complexes have been measured by pH-potentiometry in 0.15 M NaCl in 70:30 (v:v) water:ethanol at 298.1 K. UV-vis absorption and fluorometric spectral data and pH-potentiometric titrations indicate 1:1 and 2:1 metal:chemosensor species. In the solid state H2DTC is able to accommodate up to four metal ions, as proved by the crystal structures of the complexes [Zn-4(DTC)(OH)(2)(NO3)(4)] (1) and {[Cu-4(DTC)(OCH3)(2)(NO3)(4)]center dot H2O}(n) (2). H2DTC can be used as a potential chemosensor for monitoring Zn2+ and Cu2+ ions in biological and environmental media with outstanding accuracy and precision. The propensity of H2DTC to detect intracellular Cu2+ and Zn2+ ions in the triple negative human breast cancer cell line MDA-MB-468 and in HeLa cells has been determined by fluorescence cell imaging.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要