WeChat Mini Program
Old Version Features

2019年广东省连江口镇≥5岁常住人口肺结核主动筛查策略实施效果分析

Chinese Journal of Antituberculosis(2021)

Cited 1|Views24
Abstract
目的 评价不同主动筛查策略对肺结核患者的发现效果.方法 2019年12月,以居委会(村)为单位,采用整群随机抽样的方法从广东省清远市英德市连江口镇11个居委会(村)抽取2个单位作为研究现场,对研究现场≥5岁的2800名常住人口进行问卷调查,收集基本信息,并进行肺结核可疑症状筛查、结核感染筛查[γ-干扰素释放试验(IGRA)]和胸部数字影像(DR)摄片检查,对上述检查任一阳性者的痰液标本开展痰涂片、培养及分子生物学检查.以临床诊断为参照标准,通过敏感度、特异度和受试者工作特征曲线下面积(AUC)评价不同筛查策略的发现效果.结果 2800名研究对象中,有肺结核可疑症状者272例(9.71%),胸部DR异常者301例(10.75%),结核感染筛查阳性者617例(22.04%);其中,胸部DR异常者中疑似肺结核者67例(22.26%).共发现活动性肺结核患者8例,发现率为285.71/10万,除1例为已登记并接受治疗的患者外,其他7例均为≥15岁胸部DR异常的新发现患者.以临床诊断为参照标准,胸部DR摄片筛查的敏感度和特异度最优,分别为7/8和88.28%(2207/2500),AUC值最大(0.88).结论 不同的主动筛查策略中,胸部DR检查的诊断价值最高,可作为主动筛查策略的优先选择.
More
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined