不同剂量布地奈德对AECOPD患者肺功能和PCT、MMP-9及TIMP-1水平的影响
Journal of Molecular Diagnosis and Therapy(2021)
Abstract
目的 分析肺功能和血清降钙素原(PCT)、基质金属蛋白酶-9(MMP-9)及金属蛋白酶-1组织抑制因子(TIMP-1)水平在慢性阻塞性肺疾病急性加重期(AECOPD)患者治疗中的变化.方法 选取2017年12月至2019年12月本院收治的AECOPD患者120例,根据不同治疗剂量分为低剂量组(1 mg/次布地奈德)及高剂量组(2 mg/次布地奈德)各60例.比较两组患者临床疗效、肺功能、动脉血气指标、PCT、MMP-9及TIMP-1水平及不良反应发生情况.结果 高剂量组患者总有效率明显高于低剂量组(96.67%vs 75.00%),差异有统计学意义(P<0.05).治疗前,两组患者FEV1、FVC、FEV1/FVC、SaO2、PaCO2、PaO2、PCT、MMP-9及TIMP-1水平比较差异均无统计学意义(P>0.05).治疗后,两组患者FEV1、FVC、FEV1/FVC、SaO2、PaCO2、PaO2水平均较治疗前上升,PCT、MMP-9及TIMP-1水平较治疗前降低,以高剂量组尤甚,差异有统计学意义(P<0.05).高剂量组与低剂量组不良反应比较差异无统计学意义(χ2=2.143,P=0.143).结论 予以2 mg/次布地奈德治疗AECOPD患者临床疗效显著,可有效改善肺功能及血气指标,降低PCT、MMP-9及TIMP-1水平.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined