WeChat Mini Program
Old Version Features

糖尿病视网膜病变患者全视网膜光凝后角膜上皮基底神经丛和朗格汉斯细胞的改变及其相关性

Chinese Journal of Optometry Ophthalmology and Visual Science(2021)

Cited 3|Views2
Abstract
目的::利用结构拼图观察糖尿病(DM)患者全视网膜光凝(PRP)前后角膜上皮基底神经丛(SNP)和朗格汉斯细胞(LC)的变化,并分析二者的相关性。方法::前瞻性临床研究。选取2019年4─11月就诊于山西省眼科医院准备行PRP治疗且双眼糖尿病视网膜病变Ⅳ期的2型DM患者,选择病情较重的眼为治疗眼,对侧眼为对照眼,分别于PRP治疗前、每次光凝后1周和PRP完成后1个月行角膜共焦显微镜检查,观察涡状结构及其周围2~3 mm区域SNP和LC的变化,并测量涡状区神经纤维长度(NFL)值和LC密度。采用重复测量方差分析比较不同观察时间点LC密度和NFL值,并采用SAS软件的MIXED模型分析重复测量的NFL值和LC密度之间的相关性。结果::共纳入患者49例。治疗眼接受PRP后部分患者出现SNP神经纤维变细,伴有不同程度的涡状区神经结构缺失的神经损伤表现;各观察时间点NFL值总体比较差异有统计学意义( F=8.039, P=0.004),且PRP治疗前NFL值[(15.5±3.7)mm/mm 2]与第2次光凝后1周[(15.0±3.5)mm/mm 2]、第3次光凝后1周[(13.4±4.3)mm/mm 2]和第4次光凝后1周[(13.5±4.1)mm/mm 2]比较差异均有统计学意义(均 P<0.05)。同时,治疗眼LC密度增加,并以涡状区为中心聚集,成熟LC浸润区伴有SNP神经结构的缺失;各观察时间点LC密度总体比较差异有统计学意义( F=12.350, P<0.001),且PRP治疗前LC密度[(40±54)cells/mm 2]与第3次光凝后1周[(79±91)cells/mm 2]、第4次光凝后1周[(98±126)cells/mm 2]以及PRP完成后1个月[(87±102)cells/mm 2]比较差异均具有统计学意义(均 P<0.05);相关分析显示治疗眼第4次激光后1周LC密度与其基线水平呈正相关( r=0.674, P<0.001);且重复测量的NFL值与LC密度呈负相关( =-0.041)。 结论::PRP多次光凝可以导致LC密度增加;成熟LC可以导致SNP神经结构破坏。
More
Translated text
Key words
panretinal photocoagulation,langerhans cell,corneal confocal microscopy,diabetic retinopathy
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined