WeChat Mini Program
Old Version Features

贵州红玉杧坐果后果实和叶片矿质元素的动态变化及相关性

Nonwood Forest Research(2021)

Cited 3|Views16
Abstract
[目的]了解坐果后贵州红玉杧果实和叶片中矿质元素含量的动态变化,为红玉杧的施肥和管理提供参考依据.[方法]以贵州种植的5年生红玉杧为试材,在果实发育期分别采集果实、第一蓬叶和第二蓬叶样品,测定并分析各部位大量矿质元素N、P、K、Ca、Mg和微量矿质元素Fe、Mn、Cu、Zn含量的变化及其相关性.[结果]采样期内红玉杧果实、第一蓬叶、第二蓬叶中矿质元素平均含量最高的是K、N、Ca,分别为15.64、13.52、14.75 g/kg.红玉杧果实中各矿质元素含量整体呈下降趋势,但是Ca、Mn含量的变化幅度较小.第一蓬叶和第二蓬叶中除Mg元素外,其他矿质元素含量的变化趋势相似.其中,N含量整体呈下降趋势,P含量呈上升趋势,K、Ca、Zn含量呈"降—升"的变化趋势,Fe、Mn、Cu含量呈"升—降—升—降"的变化趋势.Mg含量在第一蓬叶中呈"升—降"的变化趋势,在第二蓬叶中呈"降—升—降—升"的变化趋势.相关性分析结果表明:果实中除Fe含量与N、P、K、Ca、Mg、Mn、Zn含量无显著相关性外,其他各矿质元素含量间均呈显著或极显著正相关.第一蓬叶中N含量与Mg含量,P含量与Ca、Cu含量,K含量与Cu含量均呈显著正相关,Fe含量与Zn含量呈显著负相关.第二蓬叶中P含量与Ca、Cu含量,Mg含量与Ca含量呈显著正相关.[结论]果实在生长发育期对K的需求量较大,因此在坐果后要注意增施钾肥.果实中矿质元素的吸收受叶片中矿质元素的影响,叶片中P、Cu的吸收会影响果实中N、P、K、Mn、Zn的吸收,叶片中Ca的吸收会影响果实中Fe、Mn、Cu、Zn的吸收,但是叶片中Zn的吸收会促进果实中P、K、Ca、Mg、Mn、Cu的吸收.因此,为了促进果实的生长发育,在果实发育期间,应确保各矿质元素平衡,可以适当施用锌肥.
More
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined