基于反应扩散方程的水平集结构拓扑优化方法与实现
Computer-Aided Engineering(2021)
Abstract
为实现更加先进的拓扑优化算法,研究采用反应扩散方程的水平集结构拓扑优化方法,通过理论推导给出算法中的参数选择建议.该方法允许在拓扑优化过程中生成新的孔洞,初始结构无须包含孔洞,不需要重新初始化步骤,从而可提高算法的收敛性.针对传统拓扑优化中主要采用体积约束、以柔度最小为目标和体积保留率设定存在一定主观性的问题,探究不同体积保留率下的结构应力水平的变化规律,结果显示可以依据结构最大应力水平与体积保留率的变化规律确定最优体积保留率.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2010
被引用587 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper