WeChat Mini Program
Old Version Features

基于时空聚类求解带容积约束的选址-路径问题

彭婷婷,申成然,闫芳

Control and Decision(2021)

Cited 0|Views3
Abstract
选址-路径问题是供应链管理和物流系统规划中的一个重要问题,对总成本具有十分重要的影响.对考虑配送中心容积约束的带时间窗的选址-路径问题进行研究,建立以总成本最小和客户满意度最大为目标的多目标规划模型,提出两阶段算法对其进行求解.首先,利用k-means聚类算法确定配送中心选址;然后,提出一种基于时间-空间双因素的客户划分方法以确定配送中心所服务客户;最后,利用粒子群算法对各配送中心的配送路径进行规划.数值算例表明,所提出的算法较其他已有算法,均能有效地降低物流运作总成本及总配送路径长度,为解决带容积约束及时间窗的选址-路径问题提供了一种新的解决思路.
More
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined