可见光-远红外图像的多模态能见度深度学习模型
Journal of Computer-Aided Design & Computer Graphics(2021)
Abstract
为了增强能见度深度学习模型在小样本条件下的准确率和鲁棒性,提出一种基于可见光-远红外图像的多模态能见度深度学习方法.首先,利用图像配准获取视野范围与分辨率均相同的可见光-远红外输入图像对;然后,构造三分支并行结构的多模态特征融合网络;分别在可见光图像、远红外图像及其累加特征图中提取不同性质的大气特征,各分支的特征信息通过网络结构实现模态互补与融合;最后在网络末端输出图像场景所对应的能见度的等级.采用双目摄像机收集不同天气情况下的室外真实可见光-远红外图像作为实验数据,在不同性能指标、多角度下的实验结果表明,与传统单模态能见度深度学习模型相比,多模态能见度模型可显著提高小样本条件下能见度检测的准确率和鲁棒性.
MoreTranslated text
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined