Disruptive neoclassical tearing mode seeding in DIII-D with implications for ITER

NUCLEAR FUSION(2022)

引用 11|浏览20
暂无评分
摘要
New studies identify the critical parameters and physics governing disruptive neoclassical tearing mode (NTM) onset. An m/n = 2/1 mode in DIII-D that begins to grow robustly after a seeding event (edge localized mode ELM or sawtooth precursor and crash) causes the mode rotation to drop close to the plasma's E (r) = 0 rest frame; this condition opens the stabilizing ion-polarization current 'gate' and destabilizes an otherwise marginally stable NTM. Our new experimental and theoretical insights and novel toroidal theory-based modeling are benchmarked and scalable to ITER and other future experiments. The nominal ITER rotation at q = 2 is found to be stabilizing ('gate closed') except for MHD-induced transients that could 'open the gate'. Extrapolating from the DIII-D ITER baseline scenario (IBS) discharges, MHD transients are much more likely to destabilize problematic robustly growing 2/1 NTMs in ITER; this makes predictions of seeding and control of both ELMs and sawteeth imperative for more than just minimizing divertor pulsed-heat loading.
更多
查看译文
关键词
tearing,stability,tokamak
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要