CIMAR, NIMAR, and LMMA: Novel Algorithms for Thread and Memory Migrations in User Space on NUMA Systems Using Hardware Counters
Future Generation Computer Systems(2022)
Univ Santiago de Compostela
Abstract
This paper introduces two novel algorithms for thread migrations, named CIMAR (Core-aware Interchange and Migration Algorithm with performance Record -IMAR-) and NIMAR (Node-aware IMAR), and a new algorithm for the migration of memory pages, LMMA (Latency-based Memory pages Migration Algorithm), in the context of Non-Uniform Memory Access (NUMA) systems. This kind of system has complex memory hierarchies that present a challenging problem in extracting the best possible performance, where thread and memory mapping play a critical role. The presented algorithms gather and process the information provided by hardware counters to make decisions about the migrations to be performed, trying to find the optimal mapping. They have been implemented as a user space tool that looks for improving the system performance, particularly in, but not restricted to, scenarios where multiple programs with different characteristics are running. This approach has the advantage of not requiring any modification on the target programs or the Linux kernel while keeping a low overhead. Two different benchmark suites have been used to validate our algorithms: The NAS parallel benchmark, mainly devoted to computational routines, and the LevelDB database benchmark focused on read-write operations. These benchmarks allow us to illustrate the influence of our proposal in these two important types of codes. Note that those codes are state-of-the-art implementations of the routines, so few improvements could be initially expected. Experiments have been designed and conducted to emulate three different scenarios: a single program running in the system with full resources, an interactive server where multiple programs run concurrently varying the availability of resources, and a queue of tasks where granted resources are limited. The proposed algorithms have been able to produce significant benefits, especially in systems with higher latency penalties for remote accesses. When more than one benchmark is executed simultaneously, performance improvements have been obtained, reducing execution times up to 60%. In this kind of situation, the behaviour of the system is more critical, and the NUMA topology plays a more relevant role. Even in the worst case, when isolated benchmarks are executed using the whole system, that is, just one task at a time, the performance is not degraded. (C) 2021 The Authors. Published by Elsevier B.V.
MoreTranslated text
Key words
NUMA,Scheduling,Thread migration,Memory migration,Hardware counters
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined