A Multifunctional, Low-Volume Resuscitation Cocktail Improves Vital Organ Blood Flow and Hemostasis in a Pig Model of Polytrauma with Traumatic Brain Injury

JOURNAL OF CLINICAL MEDICINE(2021)

引用 1|浏览7
暂无评分
摘要
The resuscitation of polytrauma with hemorrhagic shock and traumatic brain injury (TBI) is a balance between permissive hypotension and maintaining vital organ perfusion. There is no current optimal solution. This study tested whether a multifunctional resuscitation cocktail supporting hemostasis and perfusion could mitigate blood loss while improving vital organ blood flow during prolonged limited resuscitation. Anesthetized Yorkshire swine were subjected to fluid percussion TBI, femur fracture, catheter hemorrhage, and aortic tear. Fluid resuscitation was started when lactate concentration reached 3-4 mmol/L. Animals were randomized to one of five groups. All groups received hydroxyethyl starch solution and vasopressin. Low- and high-dose fibrinogen (FBG) groups additionally received 100 and 200 mg/kg FBG, respectively. A third group received TXA and low-dose FBG. Two control groups received albumin, with one also including TXA. Animals were monitored for up to 6 h. Blood loss was decreased and vital organ blood flow was improved with low- and high-dose fibrinogen compared to albumin controls, but survival was not improved. There was no additional benefit of high- vs. low-dose FBG on blood loss or survival. TXA alone decreased blood loss but had no effect on survival, and combining TXA with FBG provided no additional benefit. Pooled analysis of all groups containing fibrinogen vs. albumin controls found improved survival, decreased blood loss, and improved vital organ blood flow with fibrinogen delivery. In conclusion, a low-volume resuscitation cocktail consisting of hydroxyethyl starch, vasopressin, and fibrinogen concentrate improved outcomes compare to controls during limited resuscitation of polytrauma.
更多
查看译文
关键词
multifunctional resuscitation fluid, damage control resuscitation, fibrinogen, hemostasis, perfusion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要