WeChat Mini Program
Old Version Features

A Fuzzy Hierarchical Reinforcement Learning Based Scheduling Method for Semiconductor Wafer Manufacturing Systems

JOURNAL OF MANUFACTURING SYSTEMS(2021)

Donghua Univ

Cited 17|Views31
Abstract
Scheduling semiconductor wafer manufacturing systems has been viewed as one of the most challenging optimization problems owing to the complicated constraints, and dynamic system environment. This paper proposes a fuzzy hierarchical reinforcement learning (FHRL) approach to schedule a SWFS, which controls the cycle time (CT) of each wafer lot to improve on-time delivery by adjusting the priority of each wafer lot. To cope with the layer correlation and wafer correlation of CT due to the re-entrant process constraint, a hierarchical model is presented with a recurrent reinforcement learning (RL) unit in each layer to control the corresponding sub-CT of each integrated circuit layer. In each RL unit, a fuzzy reward calculator is designed to reduce the impact of uncertainty of expected finishing time caused by the rematching of a lot to a delivery batch. The results demonstrate that the mean deviation (MD) between the actual and expected completion time of wafer lots under the scheduling of the FHRL approach is only about 30 % of the compared methods in the whole SWFS.
More
Translated text
Key words
Scheduling,Reinforcement learning,Fuzzy,Manufacturing system
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined