Quantification of chronic aortic regurgitation using left and right ventricular stroke volumes obtained from two new automated three-dimensional transthoracic echocardiographic software: feasibility and accuracy

The International Journal of Cardiovascular Imaging(2021)

引用 0|浏览24
暂无评分
摘要
The present study aimed to evaluate the feasibility and accuracy of chronic aortic regurgitation (CAR) quantification using left and right ventricular stroke volumes (LVSV and RVSV, respectively) obtained from two new automated three-dimensional transthoracic echocardiographic software—Dynamic HeartModel (DHM) and 3D Auto RV. Patients (n=116) with more than mild isolated CAR were included and divided into two groups: central (n=53) and eccentric CAR (n=63) groups. LVSV and RVSV were automatically measured by DHM and 3D Auto RV. Next, aortic regurgitant volume (ARVol) was calculated three ways: as the difference between LVSV and RVSV, by the two-dimensional proximal isovelocity surface area (PISA) method, and using effective regurgitant orifice area derived from real-time three-dimensional echocardiography (RT3DE) multiplied by CAR velocity time integral (the reference standard). DHM plus 3D Auto RV correlated well with RT3DE in ARVol measurement in both groups (central, r = 0.90; eccentric, r = 0.96), with no significant difference based on consistency analysis. In the eccentric group, PISA led to an obvious underestimation (mean difference= − 4.20 ml, P < 0.05). The kappa agreement between DHM plus 3D Auto RV and RT3DE in grading CAR severity in both groups was good (central, k = 0.89; eccentric, k = 0.86), but that between PISA and RT3DE in the eccentric CAR group was suboptimal ( k = 0.74). This study indicates that ARVol quantification using DHM plus 3D Auto RV is feasible and reproducible in patients with more than mild isolated CAR. This new method has great correlation and agreement with RT3DE in ARVol measurement, with evident advantages over PISA in eccentric CAR.
更多
查看译文
关键词
Three-dimensional echocardiography, Automation, Quantification, Aortic regurgitation, Regurgitant volume
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要