Crash Consistent Non-Volatile Memory Express
PROCEEDINGS OF THE 28TH ACM SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES, SOSP 2021(2021)
Department of Computer Science and Technology
Abstract
This paper presents crash consistent Non-Volatile Memory Express (ccNVMe), a novel extension of the NVMe that defines how host software communicates with the non-volatile memory (e.g., solid-state drive) across a PCI Express bus with both crash consistency and performance efficiency. Existing storage systems pay a huge tax on crash consistency, and thus can not fully exploit the multi-queue parallelism and low latency of the NVMe interface. ccNVMe alleviates this major bottleneck by coupling the crash consistency to the data dissemination. This new idea allows the storage system to achieve crash consistency by taking the free rides of the data dissemination mechanism of NVMe, using only two lightweight memory-mapped I/Os (MMIO), unlike traditional systems that use complex update protocol and heavyweight block I/Os. ccNVMe introduces transaction-aware MMIO and doorbell to reduce the PCIe traffic as well as to provide atomicity. We present how to build a high-performance and crash-consistent file system namely MQFS atop ccNVMe. We experimentally show that MQFS increases the IOPS of RocksDB by 36% and 28% compared to a state-of-the-art file system and Ext4 without journaling, respectively.
MoreTranslated text
Key words
storage protocol,crash consistency,file system,SSD,NVMe
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined