Performance of Low Synchronization Orthogonalization Methods in Anderson Accelerated Fixed Point Solvers
PROCEEDINGS OF THE 2022 SIAM CONFERENCE ON PARALLEL PROCESSING FOR SCIENTIFIC COMPUTING, PP(2022)
Univ Illinois
Abstract
Anderson Acceleration (AA) is a method to accelerate the convergence of fixed point iterations for nonlinear, algebraic systems of equations. Due to the requirement of solving a least squares problem at each iteration and a reliance on modified Gram-Schmidt for updating the iteration space, AA requires extra costly synchronization steps for global reductions. Moreover, the number of reductions in each iteration depends on the size of the iteration space. In this work, we introduce three low synchronization orthogonalization algorithms into AA within SUNDIALS that reduce the total number of global reductions per iteration to a constant of 2 or 3, independent of the size of the iteration space. A performance study demonstrates the reduced time required by the new algorithms at large processor counts with CPUs and demonstrates the predicted performance on multi-GPU architectures. Most importantly, we provide convergence and timing data for multiple numerical experiments to demonstrate reliability of the algorithms within AA and improved performance at parallel strong-scaling limits.
MoreTranslated text
Key words
Stabilized Methods,Adaptive Mesh Refinement,Iterative Methods,PDE-Constrained Optimization,Time-Stepping Schemes
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined