Combining Auto-Encoder with LSTM for WiFi-Based Fingerprint Positioning
2021 International Conference on Computer Communications and Networks (ICCCN)(2021)
Natl Yang Ming Chiao Tung Univ
Abstract
Although indoor positioning has long been investigated by various means, its accuracy remains concern. Several recent studies have applied machine learning algorithms to explore wireless fidelity (WiFi)-based positioning. In this paper, we propose a novel deep learning model which concatenates an auto-encoder with a long short term memory (LSTM) network for the purpose of WiFi fingerprint positioning. We first employ an auto-encoder to extract representative latent codes of fingerprints. Such an extraction is proven to be more reliable than simply using a deep neural network to extract representative features since a latent code can be reverted back to its original input. Then, a sequence of latent codes are injected into an LSTM network to identify location. To assess the accuracy and effectiveness of our model, we perform extensive real-life experiments.
MoreTranslated text
Key words
Auto-encoder,LSTM,WiFi RSSI,fingerprint positioning,indoor and outdoor environments
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined