Bayesian Multi-Response Nonlinear Mixed-Effect Model: Application of Two Recent HIV Infection Biomarkers
The International Journal of Biostatistics(2021)
Sante Publ France
Abstract
Since the discovery of the human immunodeficiency virus (HIV) 35 years ago, the epidemic is still ongoing in France. To monitor the dynamics of HIV transmission and assess the impact of prevention campaigns, the main indicator is the incidence. One method to estimate the HIV incidence is based on biomarker values at diagnosis and their dynamics over time. Estimating the HIV incidence from biomarkers first requires modeling their dynamics since infection using external longitudinal data. The objective of the work presented here is to estimate the joint dynamics of two biomarkers from the PRIMO cohort. We thus jointly modeled the dynamics of two biomarkers (TM and V3) using a multi-response nonlinear mixed-effect model. The parameters were estimated using Bayesian Hamiltonian Monte Carlo inference. This procedure was first applied to the real data of the PRIMO cohort. In a simulation study, we then evaluated the performance of the Bayesian procedure for estimating the parameters of multi-response nonlinear mixed-effect models.
MoreTranslated text
Key words
Hamiltonian Monte Carlo inference,HIV biomarkers,multi-response model,nonlinear mixed models
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined