RaPiD: AI Accelerator for Ultra-low Precision Training and Inference
Swagath Venkataramani,Vijayalakshmi Srinivasan,Wei Wang,Sanchari Sen,Jintao Zhang,Ankur Agrawal,Monodeep Kar,Shubham Jain,Alberto Mannari, Hoang Tran,Yulong Li,Eri Ogawa,Kazuaki Ishizaki,Hiroshi Inoue,Marcel Schaal,Mauricio J. Serrano,Jungwook Choi,Xiao Sun,Naigang Wang,Chia-Yu Chen,Allison Allain,James Bonanno,Nianzheng Cao,Robert Casatuta,Matthew Cohen,Bruce M. Fleischer,Michael Guillorn,Howard Haynie,Jinwook Jung,Mingu Kang,Kyu-Hyoun Kim,Siyu Koswatta,Sae Kyu Lee,Martin Lutz,Silvia Mueller,Jinwook Oh,Ashish Ranjan,Zhibin Ren,Scot Rider,Kerstin Schelm,Michael Scheuermann,Joel Silberman, Jie Yang,Vidhi Zalani,Xin Zhang,Ching Zhou,Matthew M. Ziegler,Vinay Shah,Moriyoshi Ohara,Pong-Fei Lu,Brian W. Curran,Sunil Shukla,Leland Chang,Kailash Gopalakrishnan 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)(2021)
Key words
Hardware Acceleration,Deep Neural Networks,Reduced Precision
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper