Extending Density Matrix Embedding: A Static Two-Particle Theory
Physical review B/Physical review B(2021)
Kings Coll London
Abstract
We introduce Extended Density Matrix Embedding Theory (EDMET), a static quantum embedding theory explicitly self-consistent with respect to local two-body physics. This overcomes the biggest practical and conceptual limitation of more traditional one-body embedding methods, namely the lack of screening and treatment of longer-range interactions. This algebraic zero-temperature embedding augments a local interacting cluster model with a minimal number of bosons from a description of the full system correlations via the random phase approximation, and admits an analytic approach to build a self-consistent Coulomb-exchange-correlation kernel. For extended Hubbard models with non-local interactions, this leads to the accurate description of phase transitions, static quantities and dynamics. We also move towards ab initio systems via the Parriser--Parr--Pople model of conjugated coronene derivatives, finding good agreement with experimental optical gaps.
MoreTranslated text
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined