WeChat Mini Program
Old Version Features

Room-and-Object Aware Knowledge Reasoning for Remote Embodied Referring Expression

Computer Vision and Pattern Recognition (CVPR)(2021)CCF A

Beihang Univ

Cited 91|Views98
Abstract
The Remote Embodied Referring Expression (REVERIE) is a recently raised task that requires an agent to navigate to and localise a referred remote object according to a high-level language instruction. Different from related VLN tasks, the key to REVERIE is to conduct goal-oriented exploration instead of strict instruction-following, due to the lack of step-by-step navigation guidance. In this paper, we propose a novel Cross-modality Knowledge Reasoning (CKR) model to address the unique challenges of this task. The CKR, based on a transformer-architecture, learns to generate scene memory tokens and utilise these informative history clues for exploration. Particularly, a Room-and-Object Aware Attention (ROAA) mechanism is devised to explicitly perceive the room- and object-type information from both linguistic and visual observations. Moreover, through incorporating commonsense knowledge, we propose a Knowledge-enabled Entity Relationship Reasoning (KERR) module to learn the internal-external correlations among room- and object-entities for agent to make proper action at each viewpoint. Evaluation on REVERIE benchmark demonstrates the superiority of the CKR model, which significantly boosts SPL and REVERIE-success rate by 64.67% and 46.05%, respectively. Code is available at: https://github.com/alloldman/CKR.
More
Translated text
Key words
novel Cross-modality Knowledge Reasoning model,informative history clues,object-type information,incorporating commonsense knowledge,Knowledge-enabled Entity Relationship Reasoning module,object-entities,REVERIE benchmark,CKR model,REVERIE-success,Remote Embodied Referring Expression,recently raised task,referred remote object,high-level language instruction,related VLN tasks,goal-oriented exploration,strict instruction-following,step-by-step navigation guidance
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Using MRT to find the research sequence of this paper
Related Papers
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined