Adaptive Deep Reinforcement Learning-Based In-Loop Filter for VVC.
IEEE Transactions on Image Processing(2021)CCF ASCI 1区
Peking Univ
Abstract
Deep learning-based in-loop filters have recently demonstrated great improvement for both coding efficiency and subjective quality in video coding. However, most existing deep learning-based in-loop filters tend to develop a sophisticated model in exchange for good performance, and they employ a single network structure to all reconstructed samples, which lack sufficient adaptiveness to the various video content, limiting their performances to some extent. In contrast, this paper proposes an adaptive deep reinforcement learning-based in-loop filter (ARLF) for versatile video coding (VVC). Specifically, we treat the filtering as a decision-making process and employ an agent to select an appropriate network by leveraging recent advances in deep reinforcement learning. To this end, we develop a lightweight backbone and utilize it to design a network set $\mathcal {S}$ containing networks with different complexities. Then a simple but efficient agent network is designed to predict the optimal network from $\mathcal {S}$ , which makes the model adaptive to various video contents. To improve the robustness of our model, a two-stage training scheme is further proposed to train the agent and tune the network set. The coding tree unit (CTU) is seen as the basic unit for the in-loop filtering processing. A CTU level control flag is applied in the sense of rate-distortion optimization (RDO). Extensive experimental results show that our ARLF approach obtains on average 2.17%, 2.65%, 2.58%, 2.51% under all-intra, low-delay P, low-delay, and random access configurations, respectively. Compared with other deep learning-based methods, the proposed approach can achieve better performance with low computation complexity.
MoreTranslated text
Key words
In-loop filter,versatile video coding (VVC),deep reinforcement learning
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2015
被引用27717 | 浏览
2018
被引用41 | 浏览
2019
被引用181 | 浏览
2019
被引用43 | 浏览
2020
被引用74 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper