Pure Tensor Program Rewriting Via Access Patterns (representation Pearl)
MAPSPLDI(2021)
University of Washington
Abstract
Tensor kernels in machine learning (ML) often correspond to pure mathematical expressions, making term rewriting an attractive strategy for optimization and mapping to specialized hardware accelerators. However, existing ML intermediate representations (IRs) tend to either be pure but high-level, making low-level rewrites to hardware targets inexpressible, or low-level but impure, hampering the use of term rewriting altogether. This paper introduces Glenside, a pure IR whose core abstraction—the access pattern—enables low-level, layout-aware, hardware-centric program rewrites. We demonstrate how term rewriting in Glenside can be used to map program fragments to hardware accelerator invocations and automatically discover classic data layout transformations like im2col. Glenside establishes a new foundation for exploring further term rewriting techniques in optimizing low-level tensor programs.
MoreTranslated text
Key words
Performance Optimization
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined