WeChat Mini Program
Old Version Features

Surface Modification and Subsequent Fermi Density Enhancement of Bi(111)

The Journal of Physical Chemistry C(2021)

Trinity Coll Dublin

Cited 9|Views18
Abstract
Defects introduced to the surface of Bi(111) break the translational symmetry and modify the surface states locally. We present a theoretical and experimental study of the 2D defects on the surface of Bi(111) and the states that they induce. Bi crystals cleaved in ultrahigh vacuum (UHV) at low temperature (110 K) and the resulting ion-etched surface are investigated by low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy (UPS), and scanning tunneling microscopy (STM) as well as spectroscopy (STS) techniques in combination with density functional theory (DFT) calculations. STS measurements of cleaved Bi(111) reveal that a commonly observed bilayer step edge has a lower density of states (DOS) around the Fermi level as compared to the atomic-flat terrace. Following ion bombardment, the Bi(111) surface reveals anomalous behavior at both 110 and 300 K: Surface periodicity is observed by LEED, and a significant increase in the number of bilayer step edges and energetically unfavorable monolayer steps is observed by STM. It is suggested that the newly exposed monolayer steps and the type A bilayer step edges result in an increase to the surface Fermi density as evidenced by UPS measurements and the Kohn-Sham DOS. These states appear to be thermodynamically stable under UHV conditions.
More
Translated text
Key words
Proximity Effects
PDF
Bibtex
收藏
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined