EFFECTS OF ROBOT-ASSISTED TRAINING ON BALANCE FUNCTION IN PATIENTS WITH STROKE: A SYSTEMATIC REVIEW AND META-ANALYSIS
JOURNAL OF REHABILITATION MEDICINE(2021)
Nanjing Med Univ
Abstract
Objective To investigate the effectiveness of robot-assisted therapy on balance function in stroke survivors. Data sources PubMed, the Cochrane Library, Embase and China National Knowledge Infrastructure databases were searched systematically for relevant studies. Study selection Randomized controlled trials reporting robot-assisted therapy on balance function in patients after stroke were included. Data extraction Information on study characteristics, demographics, interventions strategies and outcome measures were extracted by 2 reviewers. Data synthesis A total of 19 randomized trials fulfilled the inclusion criteria and 13 out of 19 were included in the meta-analysis. Analysis revealed that robot-assisted therapy significantly improved balance function assessed by berg balance scale (weighted mean difference (WMD) 3.58, 95% confidence interval (95% CI) 1.89–5.28, p < 0.001) compared with conventional therapy. Secondary analysis indicated that there was a significant difference in balance recovery between the conventional therapy and robot-assisted therapy groups in the acute/subacute stages of stroke (WMD 5.40, 95% CI 3.94–6.86, p < 0.001), while it was not significant in the chronic stages. With exoskeleton devices, the balance recovery in robot-assisted therapy groups was significantly better than in the conventional therapy groups (WMD 3.73, 95% CI 1.83–5.63, p < 0.001). Analysis further revealed that a total training time of more than 10 h can significantly improve balance function (WMD 4.53, 95% CI 2.31–6.75, p < 0.001). No publication bias or small study effects were observed according to the Cochrane Collaboration tool. Conclusion These results suggest that robot-assisted therapy is an effective intervention for improving balance function in stroke survivors. LAY ABSTRACT Balance is an important factor in ability to perform independent walking. Many patients with stroke gain little benefit from neural rehabilitation because their balance control is impaired. Robot-assisted therapy is a promising intervention approach, which has developed rapidly in recent years. Several previous reviews have focused on gait-related measurements, such as walking speed and endurance; however, the effectiveness of robot-assisted therapy on balance has not been clearly outlined. This systematic review and meta-analysis showed that robot-assisted therapy can significantly improve balance recovery compared with conventional therapy, especially for people in the acute/subacute phase after stroke treated with an exoskeleton and a total training time of more than 10 h.
MoreTranslated text
Key words
robot-assisted therapy,stroke,balance function,Berg Balance Scale,meta-analysis
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined