UroVysion荧光原位杂交技术检测在泌尿系统肿瘤诊断及膀胱癌预后监测中应用的初步探索
Journal of Diagnostics Concepts & Practice(2018)
Abstract
目的:评估UroVysion荧光原位杂交技术 (fluorescence in situ hybridization, FISH) 检测 (以下简称FISH) 在诊断不同部位发生的泌尿系统肿瘤中的灵敏度和特异度, 探究其在泌尿系统肿瘤筛查中的应用前景, 并初步探讨将其检测结果结合临床病史以监测膀胱癌患者预后的价值.方法:收集368例泌尿外科疑似泌尿系统恶性肿瘤住院患者的新鲜晨尿标本, 采用FISH检测, 比较其检测结果与临床病理特征间的相关性, 分析该检测在不同发生部位泌尿系统肿瘤诊断中的价值, 尤其是对于血尿患者的肿瘤筛查以及在膀胱癌随访监测中的临床应用价值.结果: (1) 采用FISH检测诊断不同发生部位泌尿系统恶性肿瘤 (膀胱癌、肾癌、输尿管癌和前列腺癌) 时, 其对于血尿标本的诊断灵敏度高于非血尿标本 (P<0.05). (2) 采用FISH检测诊断不同病理分级、分期的泌尿系统肿瘤时, 其对于高级别肿瘤的诊断灵敏度和特异度明显高于低级别肿瘤, 尤其对于血尿标本呈现出较高的诊断灵敏度 (P<0.05). (3) 在最终确诊为膀胱癌的156例患者中, 有45.51% (71/156) 的患者在随访中出现肿瘤复发, 而FISH监测膀胱癌患者复发的阳性检出率为57.75% (41/71). (4) 采用FISH法随访监测156例最终确诊为膀胱癌的患者, 诊断血尿患者在随访中复发的灵敏度高于有泌尿系统肿瘤病史患者的灵敏度.结论: (1) FISH检测在泌尿系统肿瘤诊断中具有较高的灵敏度和特异度, 且与肿瘤的恶性程度及浸润程度间有一定的相关性, 尤其在诊断高级别肌层浸润性膀胱癌中具有重要价值. (2) FISH检测可用于监测膀胱癌患者的复发及预后, 尤其应加强对血尿患者的随访.
MoreTranslated text
Key words
Fluorescence in situ hybridization,Urological malignancy,Bladder cancer,Hematuria,Prognosis
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined