WeChat Mini Program
Old Version Features

个体化预测急性ST段抬高型心肌梗死患者发生自发再灌注的列线图模型的建立

Journal of Clinical Cardiology(2020)

Cited 7|Views18
Abstract
目的:建立预测急性ST段抬高型心肌梗死(STEMI)患者发生自发再灌注的个性化列线图模型.方法:选取2016年12月1日-2019年12月24日南方医科大学深圳医院收治的初发型STEMI患者108例,根据急诊冠状动脉造影TIMI评分,分为自发再灌注组(TIMI 2~3级,SR组)和无自发再灌注组(TIMI 0~1级,NSR组).通过单因素及多因素Logistic回归分析得到急性STEMI患者自发再灌注的独立预测因素,应用R语言软件建立列线图模型并对其进行验证.结果:单因素及多因素Logistic回归分析显示,年龄<55岁(OR=1.200,95%CI:1.025~1.405)、发病至用药时间<3.7 h(OR=3.040,95%CI:1.249~7.403)、术前ST段回落≥50%(OR=2.171,95 %CI:1.194~3.946)、胸痛评分下降>5分(OR=1.156,95%CI:1.100~1.215)以及肌酸激酶同工酶(CK-MB)<185 U/L(OR=1.048,95%CI:1.002~1.095)是急性STEMI患者发生自发再灌注的独立预测因素.基于上述独立预测因素建立列线图模型,验证后发现预测值同实测值基本一致,提示预测模型拟合度良好.随后采用Bootstrap内部验证法对预测模型进行验证,C-index为0.968(95% CI:0.916~0.997),说明该列线图预测模型预测效能高.结论:基于年龄、发病至用药时间、术前ST段回落、胸痛评分下降以及CK-MB等因素建立的个体化列线图模型预测急性STEMI患者发生自发再灌注的能力较好,临床应用价值高.
More
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined