WeChat Mini Program
Old Version Features

未行术后放疗ⅢA~N2期非小细胞肺癌首次局部复发模式及其相关因素

Journal of Chinese Oncology(2019)

Cited 3|Views7
Abstract
[目的]探讨未行术后放疗的ⅢA~N2期非小细胞肺癌(NSCLC)首次局部复发模式及其影响因素,为高危淋巴引流区照射范围的设计提供依据.[方法]回顾分析本院2012年至2015年初治的病例资料完整的ⅢA~N2期NSCLC患者75例,纳入条件为接受根治性手术,病理证实为ⅢA~N2期NSCLC,未行新辅助治疗或术后放疗,术后行辅助化疗,首次复发涉及局部区域,具有首次复发影像资料.[结果]局部复发时间为3~45月,中位局部复发时间为11月,伴有远处转移37例,不伴远处转移38例.全组复发最高危部位为4R(44%)、7区(43%)、残端(27%).左上叶肺癌多见复发部位(>10%)为7区、4R、同侧肺门、2R、2L、4L、5区和残端.左下叶肺癌多见复发部位(>10%)为4R、7区、4L、5区、同侧肺门和残端.右上中叶肺癌多见复发部位(>10%)为4R、7区、2R、3P、残端和同侧肺门.右下叶肺癌多见复发部位(>10%)为7区、残端和4R、同侧肺门.鳞癌和腺癌残端复发比例分别为56.3% (9/16)和18% (9/50) (P=0.003).肿瘤直径≥5cm和肿瘤直径<5cm患者残端复发比例分别为44%(11/25)和18%(9/50) (P=0.016).N2跳跃转移和N2非跳跃转移的患者同侧肺门复发比例分别为7.5%(3/40)31.4%(11/35)(P=0.008).[结论]未行术后放疗的ⅢA~N2期NSCLC不同原发部位的高危复发区域不同,且首次局部复发模式受病理类型、肿瘤大小、N2跳跃转移影响,术后放疗靶区设计应考虑上述因素.
More
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined