WeChat Mini Program
Old Version Features

基于优化时间函数的采动地表任意点沉陷动态预计

Coal Science and Technology(2020)

Cited 3|Views6
Abstract
针对常用Knothe时间函数在动态预计中理论研究方面存在不足及在地表下沉初始阶段预计精度较低等问题,为了能够全面地了解矿区地表沉陷动态发展变化过程,掌握地表各重要点位的动态变形规律,提高动态预计精度和动态预计的针对性,发挥动态预计在指导矿山工程实践中的应有作用,基于概率积分模型,采用优化分段Knothe时间函数,构建了可预测地表任意点动态沉降变形的计算模型,并开发了计算程序,所建模型各参数意义明确,求取方便,同时,矿区地表监测点即使布设在非主断面上,也可根据实测数据利用模型反算概率积分参数.实例1表明:在考虑拐点偏移距的情况下,预测的地表下沉盆地两拐点的下沉值基本等于盆地最大下沉量的1/2,与理论揭示完全吻合;通过对不同时刻地表点的下沉和倾斜进行动态预计,清楚地说明了地表下沉盆地和倾斜变形的动态发展过程;另外,通过倾斜三维图及其二维等值线图的变化过程可知,下沉盆地平底部分的倾斜值尽管最终为0,但也是经历了从小到大、再从大到小、最后趋于0的剧烈变化过程,如果只进行稳定后的静态预计则反映不了这一动态过程;实例2表明:通过对比分析1176东工作面各采动期的地表监测点实测与动态预计结果,并抽样进行精度分析可知,动态预计相对中误差最小为5.6%,最大为14.2%.经统计预测相对中误差可稳定在8%左右,证明了模型预测精度是可靠性的.
More
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined