基于DFT基的矿井视频监控图像分块压缩感知方法?
wf(2017)
Abstract
针对矿井视频监控图像受噪声干扰影响大,采用常规的图像采样和压缩方法存在图像模糊和传输时间过长等问题,提出了一种矿井视频监控图像分块压缩感知方法。该方法通过建立矿井视频监控图像分块压缩感知模型,在井下图像采集节点利用稀疏随机矩阵进行压缩采样,然后在地面监控中心利用正交匹配追踪( OMP )算法重构图像。研究结果表明,采用本文算法的重构图像误差小、重构时间短,所需信号采样点数少;与扰频Hadamard矩阵相比,采用稀疏随机矩阵和高斯随机矩阵作为观测矩阵对图像信号重构的峰值信噪比( PSNR)提高4 dB~5 dB;本文算法与基于小波基的算法相比,信号重构的PSNR提高1 dB~4 dB,重构时间缩短至少80%以上。
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined