Distribution Matching Prototypical Network for Unsupervised Domain Adaptation
ICLR 2020(2020)
Researcher
Abstract
State-of-the-art Unsupervised Domain Adaptation (UDA) methods learn transferable features by minimizing the feature distribution discrepancy between the source and target domains. Different from these methods which do not model the feature distributions explicitly, in this paper, we explore explicit feature distribution modeling for UDA. In particular, we propose Distribution Matching Prototypical Network (DMPN) to model the deep features from each domain as Gaussian mixture distributions. With explicit feature distribution modeling, we can easily measure the discrepancy between the two domains. In DMPN, we propose two new domain discrepancy losses with probabilistic interpretations. The first one minimizes the distances between the corresponding Gaussian component means of the source and target data. The second one minimizes the pseudo negative log likelihood of generating the target features from source feature distribution. To learn both discriminative and domain invariant features, DMPN is trained by minimizing the classification loss on the labeled source data and the domain discrepancy losses together. Extensive experiments are conducted over two UDA tasks. Our approach yields a large margin in the Digits Image transfer task over state-of-the-art approaches. More remarkably, DMPN obtains a mean accuracy of 81.4% on VisDA 2017 dataset. The hyper-parameter sensitivity analysis shows that our approach is robust w.r.t hyper-parameter changes.
MoreTranslated text
Key words
Deep Learning,Unsupervised Domain Adaptation,Distribution Modeling
求助PDF
上传PDF
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined