WeChat Mini Program
Old Version Features

Seeking Meaning: Examining a Cross-situational Solution to Learn Action Verbs Using Human Simulation Paradigm.

CogSci(2020)

Cited 5|Views9
Abstract
To acquire the meaning of a verb, language learners not only need to find the correct mapping between a specific verb and an action or event in the world, but also infer the underlying relational meaning that the verb encodes. Most verb naming instances in naturalistic contexts are highly ambiguous as many possible actions can be embedded in the same scenario and many possible verbs can be used to describe those actions. To understand whether learners can find the correct verb meaning from referentially ambiguous learning situations, we conducted three experiments using the Human Simulation Paradigm with adult learners. Our results suggest that although finding the right verb meaning from one learning instance is hard, there is a statistical solution to this problem. When provided with multiple verb learning instances all referring to the same verb, learners are able to aggregate information across situations and gradually converge to the correct semantic space. Even in cases where they may not guess the exact target verb, they can still discover the right meaning by guessing a similar verb that is semantically close to the ground truth.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined