WeChat Mini Program
Old Version Features

Big Data and Machine Learning Framework for Clouds and Its Usage for Text Classification.

Concurrency and Computation Practice and Experience(2020)

Inst Comp Sci & Control SZTAKI

Cited 10|Views13
Abstract
Reference architectures for big data and machine learning include not only interconnected building blocks but important considerations (among others) for scalability, manageability and usability issues as well. Leveraging on such reference architectures, the automated deployment of distributed toolsets and frameworks on various clouds is still challenging due to the diversity of technologies and protocols. The paper focuses particularly on the widespread Apache Spark cluster with Jupyter as the particularly addressed framework, and the Occopus cloud-agnostic orchestrator tool for automating its deployment and maintenance stages. The presented approach has been demonstrated and validated with a new, promising text classification application on the Hungarian academic research infrastructure, the OpenStack-based MTA Cloud. The paper explains the concept, the applied components, and illustrates their usage with real use-case measurements.
More
Translated text
Key words
big data,cloud,machine learning,parallel and distributed execution,reference architectures,text classification
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined