WeChat Mini Program
Old Version Features

The State of the Art of Spatial Interfaces for 3D Visualization

Computer Graphics Forum(2021)

Linkoping Univ

Cited 70|Views54
Abstract
We survey the state of the art of spatial interfaces for 3D visualization. Interaction techniques are crucial to data visualization processes and the visualization research community has been calling for more research on interaction for years. Yet, research papers focusing on interaction techniques, in particular for 3D visualization purposes, are not always published in visualization venues, sometimes making it challenging to synthesize the latest interaction and visualization results. We therefore introduce a taxonomy of interaction technique for 3D visualization. The taxonomy is organized along two axes: the primary source of input on the one hand and the visualization task they support on the other hand. Surveying the state of the art allows us to highlight specific challenges and missed opportunities for research in 3D visualization. In particular, we call for additional research in: (1) controlling 3D visualization widgets to help scientists better understand their data, (2) 3D interaction techniques for dissemination, which are under‐explored yet show great promise for helping museum and science centers in their mission to share recent knowledge, and (3) developing new measures that move beyond traditional time and errors metrics for evaluating visualizations that include spatial interaction.
More
Translated text
Key words
visualization
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined