WeChat Mini Program
Old Version Features

Extracting Fast Targets From An Eo Sensor

SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXVIII(2019)

Univ Connecticut

Cited 0|Views6
Abstract
This work describes a method for measurement extraction of fast point targets leaving an extended signature in the pixelated focal plane array of an EO sensor. The extraction method and subsequent statistics are derived from a physics based model where the spatial quantization regions, or pixels, are separated by dead zones. Furthermore, the intensity in a pixel is corrupted by approximately Gaussian noise which exhibits a variance proportional to the pixel area. This noise model is based on a Poisson assumption, in reference to the number of photons that contribute to the noise intensity. The signal portion of the image is a spatially quantized version of the target's point spread function (PSF) that is modeled as a Gaussian PSF that moves at a constant velocity, a realistic assumption during an exposure time that may have been adjusted (and lengthened) to enhance target SNR. The measurement extraction is done using a Maximum Likelihood (ML) method for which we provide an appropriate Cramer-Rao Lower Bound (CRLB) on the estimation error of the target's 2-D starting and ending positions. We then provide a definition for the signal to noise ratio (SNR) in an image using a matched filter (MF). Next, we present Monte Carlo simulations to confirm the derived results and find that the measurement extractor is efficient for SNRs >= 12dB (using our SNR definition). Finally, we develop a solution to the problem of detecting fast targets in images. We present approximate distributions for the test statistic under the null (H-0 - target absent) and alternative (H-1 - target present) hypotheses that can be used to set a threshold for specific probabilities of detection P-D and false alarm P-FA. Finally, we verify these distributions with Monte Carlo simulations.
More
Translated text
Key words
Measurement Extraction,Focal Plane Array,Point Target,Streaking Target,Extended Point Spread Function,Detection Performance,ROC,CRLB,Efficient Estimator
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined