WeChat Mini Program
Old Version Features

A High‐precision Method Evaluating Color Quality of Sichuan Dark Tea Based on Colorimeter Combined with Multi‐layer Perceptron

JOURNAL OF FOOD PROCESS ENGINEERING(2020)

211 Huimin Rd

Cited 12|Views14
Abstract
Instrumental examination of Sichuan Dark Tea (SDT) quality instead of human panel sensory evaluation is important for quality control. This study attempted to create a high-precision method to rapidly and accurately evaluate SDT color quality. Colorimeter combined with multi-layer perceptron (MLP) was utilized to extract CIELAB color parameters of dried tea, liquor, and infused tea, respectively, and established the prediction models of color attributes scores with the optimal color parameters selected by a principal component analysis (PCA). MLP models established could accurately predict color total scores of SDT, the glossiness of dried tea, and chroma of infused tea (R-p = 0.889-0.989; RMSEP = 0.393-0.631). Besides, models based on tea pigments could accurately predict infused tea color total scores (R-p = 0.920, RMSEP = 0.531). Parameter a* was significantly correlated with almost all of the color evaluation factors of SDT and seemed to be the characteristic color parameter. The color quality of Sichuan Dark Tea can be excellently estimated by the method utilizing colorimeter coupled with MLP. Practical applications To meet the requirement of dark tea production and the costumer's expectation, this study attempted to create a high-precision method quickly and accurately evaluating color quality of SDT. Usually, in the massive production, tea color evaluated by eyesight is time-consuming, subjective, and has poor accuracy due to visual fatigue of human. In this work, we optimized color parameters with PCA to improve the performance of MLP models established. The results can provide a theoretical basis for the evaluation of tea color quality by instrument, and make SDT quality control more convenient, accurate, and time-saving.
More
Translated text
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined