Device Architectures for Low Voltage and Ultrafast Graphene Integrated Phase Modulators

IEEE Journal of Selected Topics in Quantum Electronics(2021)

引用 20|浏览42
暂无评分
摘要
The atomic layer thin geometry and semi-metallic band diagram of graphene can be utilized for significantly improving the performance matrix of integrated photonic devices. Its semiconductor-like behavior of Fermi-level tunability allows graphene to serve as an active layer for electro-optic modulation. As a low loss metal layer, graphene can be placed much closer to active layer for low voltage operation. In this work, we investigate hybrid device architectures utilizing semiconductor and metallic properties of the graphene for ultrafast and energy-efficient electro-optic phase modulators on semiconductor and dielectric platforms. (1) Directly contacted graphene-silicon heterojunctions. Without the oxide layer, the carrier density of graphene can be modulated by direct contact to silicon layer, while silicon intrinsic region stays mostly depleted. With doped silicon as electrodes, carriers can be quickly injected and depleted from the active region in graphene. The ultrafast carrier transit time and small RC constant promise ultrafast modulation speed (3 dB bandwidth of 67 GHz) with an estimated Vπ·L of 1.19 V·mm. (2) Graphene integrated lithium niobite modulator. As a transparent electrode, graphene can be placed close to integrated lithium niobate waveguide for improving coupling coefficient between optical mode profile and electric field with minimal additional loss (4.6 dB/cm). Numerical simulation indicates a 2.5× improvement of electro-optic field overlap coefficient, with an estimated Vπ of 0.2 V.
更多
查看译文
关键词
Graphene,silicon photonics,Lithium Niobate, $p-n$ junction,phase modulator,Mach–Zehnder interferometer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要