An Understandable, Extensible, and Reusable Implementation of the Hodgkin-Huxley Equations Using Modelica
Frontiers in Physiology(2020)
Univ Appl Sci
Abstract
The Hodgkin-Huxley model of the squid giant axon has been used for decades as the basis of many action potential models. These models are usually communicated using just a list of equations or a circuit diagram, which makes them unnecessarily complicated both for novices and for experts. We present a modular version of the Hodgkin-Huxley model that is more understandable than the usual monolithic implementations and that can be easily reused and extended. Our model is written in Modelica using software engineering concepts, such as object orientation and inheritance. It retains the electrical analogy, but names and explains individual components in biological terms. We use cognitive load theory to measure understandability as the amount of items that have to be kept in working memory simultaneously. The model is broken down into small self-contained components in human-readable code with extensive documentation. Additionally, it features a hybrid diagram that uses biological symbols in an electrical circuit and that is directly tied to the model code. The new model design avoids many redundancies and reduces the cognitive load associated with understanding the model by a factor of 6. Extensions can be easily applied due to an unifying interface and inheritance from shared base classes. The model can be used in an educational context as a more approachable introduction to mathematical modeling in electrophysiology. Additionally the modeling approach and the base components can be used to make complex Hodgkin-Huxley-type models more understandable and reusable.
MoreTranslated text
Key words
understandability,cognitive load theory,Modelica,mathematical modeling,software engineering,model engineering,Hodgkin-Huxley,action potential
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined